\(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [475]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 98 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d} \]

[Out]

-2*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d+10/3*cos(d*x+c)/a/d/(a+a*sin(d*x+c))^(1/2)-2/3
*cos(d*x+c)*(a+a*sin(d*x+c))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2959, 2725, 3125, 3060, 2852, 212} \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}-\frac {2 \cos (c+d x) \sqrt {a \sin (c+d x)+a}}{3 a^2 d}+\frac {10 \cos (c+d x)}{3 a d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(a^(3/2)*d) + (10*Cos[c + d*x])/(3*a*d*Sqrt[a +
a*Sin[c + d*x]]) - (2*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(3*a^2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2725

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x
]])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2959

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[-2/(a*b*d), Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x], x] + Dist[1/a^2
, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}
, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3125

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Si
mp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^
(-1)] && NeQ[m + n + 2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \left (1+\sin ^2(c+d x)\right ) \, dx}{a^2}-\frac {2 \int \sqrt {a+a \sin (c+d x)} \, dx}{a^2} \\ & = \frac {4 \cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}+\frac {2 \int \csc (c+d x) \left (\frac {3 a}{2}+\frac {1}{2} a \sin (c+d x)\right ) \sqrt {a+a \sin (c+d x)} \, dx}{3 a^3} \\ & = \frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}+\frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{a^2} \\ & = \frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d}-\frac {2 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a d} \\ & = -\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac {10 \cos (c+d x)}{3 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.69 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.50 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (9 \cos \left (\frac {1}{2} (c+d x)\right )-\cos \left (\frac {3}{2} (c+d x)\right )-3 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+3 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-9 \sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )}{3 d (a (1+\sin (c+d x)))^{3/2}} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(9*Cos[(c + d*x)/2] - Cos[(3*(c + d*x))/2] - 3*Log[1 + Cos[(c + d*x)/
2] - Sin[(c + d*x)/2]] + 3*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 9*Sin[(c + d*x)/2] - Sin[(3*(c + d*x
))/2]))/(3*d*(a*(1 + Sin[c + d*x]))^(3/2))

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.05

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (-3 a^{\frac {3}{2}} \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right )+\left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}}+3 \sqrt {a -a \sin \left (d x +c \right )}\, a \right )}{3 a^{3} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(103\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/a^3*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-3*a^(3/2)*arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2))+(a-a*sin(
d*x+c))^(3/2)+3*(a-a*sin(d*x+c))^(1/2)*a)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 260 vs. \(2 (84) = 168\).

Time = 0.27 (sec) , antiderivative size = 260, normalized size of antiderivative = 2.65 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + \sin \left (d x + c\right ) + 1\right )} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right ) - 4 \, \cos \left (d x + c\right ) - 5\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{6 \, {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(a)*(cos(d*x + c) + sin(d*x + c) + 1)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^
2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c)
+ (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)
^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 5)*sin(d*x + c) - 4*cos(d*x +
c) - 5)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c) + a^2*d*sin(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)/(a*(sin(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \csc \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4*csc(d*x + c)/(a*sin(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.41 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} \sqrt {a} {\left (\frac {3 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {4 \, {\left (2 \, a^{4} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a^{4} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/6*sqrt(2)*sqrt(a)*(3*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-
1/4*pi + 1/2*d*x + 1/2*c)))/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) + 4*(2*a^4*sin(-1/4*pi + 1/2*d*x + 1/2*c
)^3 + 3*a^4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(a^6*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{\sin \left (c+d\,x\right )\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)^4/(sin(c + d*x)*(a + a*sin(c + d*x))^(3/2)),x)

[Out]

int(cos(c + d*x)^4/(sin(c + d*x)*(a + a*sin(c + d*x))^(3/2)), x)